

Building an Autonomous & Scalable Semiconductor VLSI Business

T. R. Ramachandran, Ph. D. Senior Director, Product Operations Storage Peripherals Division, LSI

July 2011, Chennai, India IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2011)

Outline

Introduction	LSI overviewWhat is autonomy & scale?Motivation for this talkKey messages
Why Autonomy & Scale	 Key VLSI industry trends First-to-market vs. lasting leadership Growth isn't easy Exchange rates & globalization
Autonomy in Semi Business	Functional autonomyManagement autonomy
Scaling the Semi Business	 Imagining scale Framework for driving scale Organization Strategy/Planning Operations
Looking Ahead	Closing Thoughts

LSI - A History of Leadership & Innovation

- History of industry firsts:
 - First single-chip DSP
 - First 32-bit Microprocessor
 - First single-chip HDD processor
 - First 3Gb/s SAS Controller
 - First 6 Gb/s SAS Switch
 - First 6Gb/s RAID on Chip (ROC)
 - Pioneered gate arrays and cell-based ASICs
- Over 10,000 active patents
- 10 active research projects aligned to both product roadmap innovation and path-finding activities with leading universities
- LSI holds leadership positions in many industry standards organizations, alliances, consortiums, customer partnership groups and trade groups

LSI Overview

Focused on Converged Infrastucture

(Storage + Networking)

~ 80% of Revenue Tied to Enterprise IT Spending

Significant Strategic Transformation

9 Acquisitions (\$4B+), 3 Divestitures Elimination of all Internal Manufacturing

Solid Financial Foundation

\$2.57B Revenue in 2010 \$677M in Cash and Short Term Investments

Strong Global Presence

4500 Employees

> 50 Worldwide Site Locations

Culture of Innovation

11,000+ Patents and Patent applications

LSI's Product Lines and Technology Foundation

Pre-Amplifiers

SSD Controllers

Storage Components

SAS ROCs/Controllers

SAS Expanders/Bridges

SAS HBAs

Networking Components

Content Processors

Packet Processors

Media Processors

Custom Silicon Solutions

Serial Connectivity

Rich IP Portfolio

Flexible Model

Fundamental Storage and Networking Technologies

SERDES

Memory

CPUs

Security

PHY

Silicon Platform Technologies

110 nm

90 nm

65 nm

40 nm

28 nm

BiCMOS

What is Autonomy & Scale?

Autonomy

End-to-end ownership of business that is more or less independent & is run with limited direction required from a 'parent' business

Scale

A business that is successful in responding to the stringent demands of strong growth & avoids becoming inelastic to rapidly changing conditions

Motivation for this talk

- VLSI industry has been at the forefront of dramatic advances
 - Has uniquely contributed to human advancement & broad economic growth
- Vibrancy of VLSI industry worldwide is impressive
 - India's participation and leadership in VLSI has been growing dramatically
 - There are opportunities to extend leadership & global VLSI footprint
- However, many VLSI products stumble or fail in their end markets
 - Even established giants falter; hurdle higher for newer or smaller companies
 - Product development & innovation focus is necessary but not sufficient
- Driving more autonomy & scale necessary for successful growth
 - Indian VLSI industry in a good position to move further in this direction
- This talk explores the underpinnings of driving autonomy & scale
 - Based in part on LSI's experiences worldwide & especially in India

Key Messages

- Growth challenges can be met more effectively w/ autonomy & scale
- Additional factors could influence long-term success in geos like India
 - Possible headwinds: Growing pains, globalization & exchange rate trajectories
 - Possible tailwinds: Increased exposure to in-country OEMs & manufacturers
- More autonomy requires end-to-end capabilities & stronger management
 - Functional & management autonomy are both key
- Scale-building requires focus on org, strategy/planning & operations
- Due-diligence in managing entire product life-cycle is key to success

Outline

Introduction	LSI overviewWhat is autonomy & scale?Motivation for this talkKey messages
Why Autonomy & Scale	 Key VLSI industry trends First-to-market vs. lasting leadership Growth isn't easy Exchange rates & globalization
Autonomy in Semi Business	Functional autonomyManagement autonomy
Scaling the Semi Business	 Imagining scale Framework for driving scale Organization Strategy/Planning Operations
Looking Ahead	Closing Thoughts

VLSI Industry - Key Trends

Facet	Key Trends
Product Complexity	 Growing w/ generational increases in transistors & frequencies
Manufacturing Complexity	 More challenging with node shrinks and more nano-scale effects Supplier base consolidation
R&D Cost	 Increasing w/ design complexity & higher mask costs
Industry Growth	 Maturing but higher growth in emerging geos
Customers	Continued industry consolidation - bigger & more demanding customers
Competition	 Significant w/ strong incumbents - not easy to penetrate \$B-size markets
Globalization	 Increasing across the board "Round the clock" activity Geos across the world capitalizing on unique skillsets or building VLSI hubs

VLSI Industry - Key Trends

Facet	Key Trends	That Drive a Need for
Product Complexity	 Growing w/ generational increases in transistors & frequencies 	 Robust understanding of technology & product development process
Manufacturing Complexity	More challenging with node shrinks and more nano-scale effectsSupplier base consolidation	 Skilled engagement w/ & oversight of manufacturing/assembly/test Effective supplier management
R&D Cost	 Increasing w/ design complexity & higher mask costs 	 Minimal errata/spins & strong product planning & execution due diligence
Industry Growth	 Maturing but higher growth in emerging geos 	 Increase in end-to-end ownership & scale in emerging geos
Customers	Continued industry consolidation - bigger & more demanding customers	Building strong loyalty via depth of understanding of cust. needs & execution w/ limited room for product failures
Competition	 Significant w/ strong incumbents - not easy to penetrate \$B-size markets 	 Near-flawless strategy/planning & strong execution due diligence
Globalization	 Increasing across the board "Round the clock" activity Geos across the world capitalizing on unique skillsets or building VLSI hubs 	 Strong global management teams to drive a culture of discipline Geos to take on more ownership to differentiate themselves from others

Autonomy & scale increasingly important to keep up with trends

First-to-Market vs. Lasting Leadership (examples)

Commercial Product	First Market Entrant
Portable computer	GM Research's Micro Star; Osborne Computer Corp.'s Osborne1 was first to mass mkt
Personal computer	Depends on "computer" defn; R2E's Micral, Kenbak-1 & MITS Altair 8800 usually cited
Mainframe computer	Remington Rand's (now Unisys) UNIVAC I
Handheld cell phone	Motorola Dynatac
Smartphone	IBM Simon
DRAM chip	Intel 1103
CPU chip	Intel 4004
FPGA	Xilinx XC2064

First-to-Market vs. Lasting Leadership (examples)

Commercial Product	First Market Entrant	Current Market Leader(s)	Source(s)
Portable computer	GM Research's Micro Star; Osborne Computer Corp.'s Osborne1 was first to mass mkt	HP (excl. Tablet PCs) Apple (incl. Tablet PCs)	PC Mag, Wikipedia, Digitimes, Display Search
Personal computer	Depends on "computer" defn; R2E's Micral, Kenbak-1 & MITS Altair 8800 usually cited	HP	Computer History Museum, Wikipedia, Center for Computing History, Fast Company
Mainframe computer	Remington Rand's (now Unisys) UNIVAC I	IBM	Comp History Museum, Wikipedia, IBM
Handheld cell phone	Motorola Dynatac	Nokia	Wikipedia, PC World, Gartner
Smartphone	IBM Simon	Nokia (handset) Google Android (OS)	Gartner, IDC, Time, Ars Technica, PC World,
DRAM chip	Intel 1103	Samsung	<u>Wikipedia,</u> DRAMeXchange
CPU chip	Intel 4004	Intel	Intel
FPGA	Xilinx XC2064	Xilinx	Wikipedia

Retaining #1 spot requires much more than an early mover advantage – lack of autonomy & scale could be significant disadvantages

Examples from Computer Industry

Company	Profitability/Growth Setback
Intel	Sandy Bridge CPU chipset (Cougar Point) recall/replacement due to design flaw; \$300M rev impact & \$700M cost to replace
AMD	Lost revenue due to Phenom quad-core CPU TTM delay & HW bug
Nvidia	~\$475M charge against earnings to repair/replace GPUs/chipsets with quality issue ("weak die/pkg material"/underfill); TTM delay & financial impact due to foundry mfg yield issues
	Successful direct sales model lost momentum with retail notebook PC growth over desktop
Dell	Revenue/share loss from PCs shipped w/ bad capacitors; \$300M charge; replaced millions of motherboards
Microsoft	\$1B+ charge against earnings to cover Xbox hardware failures tied to design and/or mfg. quality issues
Sun Microsystems	Delayed move from Sparc to x86 platforms; weak financial monetization/returns on key investments (recently acquired by Oracle)
Silicon Graphics	Biz mgmt did not scale with rev growth leading to TTM, quality, & inventory mgmt issues; missed industry transition to cheaper PCs; went bankrupt
Gateway	Biz mgmt & customer service issues, costly mix of product choices & reliance on owned retail stores during PC price war (acquired by Acer)

Examples from Computer Industry

Company	Profitability/Growth Setback	Spotlight On	Sources
Intel	Sandy Bridge CPU chipset (Cougar Point) recall/replacement due to design flaw; \$300M rev impact & \$700M cost to replace	 Quality Financials	Information Week, AnandTech
AMD	Lost revenue due to Phenom quad-core CPU TTM delay & HW bug	 Quality Schedule/TTM Financials	Tech Radar, Tech Report, CRN
Nvidia	~\$475M charge against earnings to repair/replace GPUs/chipsets with quality issue ("weak die/pkg material"/underfill); TTM delay & financial impact due to foundry mfg yield issues	 Quality/Mfg. Schedule/TTM Financials	CNET, CNET, EE Times, Computer World
	Successful direct sales model lost momentum with retail notebook PC growth over desktop	StrategyCustomer Needs	NYT, WSJ
	Revenue/share loss from PCs shipped w/ bad capacitors; \$300M charge; replaced millions of motherboards	 Quality/Manuf. Customer Mgmt Financials	Business Insider (BI), NYT, NYT, CNN Money, Industry Std
Microsoft	\$1B+ charge against earnings to cover Xbox hardware failures tied to design and/or mfg. quality issues	 Quality/Manuf. Customer Mgmt Financials	Microsoft, Venture Beat, CBS, Computer World
Sun Microsystems	Delayed move from Sparc to x86 platforms; weak financial monetization/returns on key investments (recently acquired by Oracle)	StrategyCustomer NeedsFinancials	Network World
Silicon Graphics	Biz mgmt did not scale with rev growth leading to TTM, quality, & inventory mgmt issues; missed industry transition to cheaper PCs; went bankrupt	ScheduleQuality/Manuf.Financials	Business Week, The Register, VizWorld
Gateway	Biz mgmt & customer service issues, costly mix of product choices & reliance on owned retail stores during PC price war (acquired by Acer)	StrategyFinancialsCustomer Mgmt	Fortune, CNET, CNET

Examples from Telecom/Mobility Industry

Company	Profitability/Growth Setback	Spotlight On	Sources
Nortel Networks	114-yr old Canadian giant was unable to recover from post-Y2K demand fallout & compete with more innovative/cheaper products; acctg. irregularities; filed for bankruptcy & sold some businesses	FinancialsCustomer Needs	Canadian Business, NYT
Motorola	Introduced first commercial cell phone but leadership biz plummeted due to late entry to smartphone mkt, delayed adoption of digital (vs. analog) technologies, diversion on Iridium, equipment quality issues & financials	StrategyQualityCustomer NeedsSchedule/TTMFinancials	CNET, WSJ, Business Week, Forbes, NYT
Nokia	Long-dominant position in smartphone market eroding, challenged on innovation and keeping up w/ market trends & pricing pressures; moving away from Symbian OS platform	StrategyCustomer NeedsSchedule/TTMFinancials	Forbes, The Independent, Gartner
Research In Motion (RIM)	Revenue & share loss due to less competitive UI & features compared to iOS & Android phones	StrategyCustomer Needs	<u>BI, BI</u>

Autonomy & scalability enable better end-to-end visibility & comprehensive business management – strong design R&D is just one of many elements required for success

Exchange Rates & GlobalizationThe US Dollar

"...."I would recommend against buying long-term fixed-dollar investments," [Warren] Buffett said at a public appearance in New Delhi. "If you ask me if the U.S. dollar is going to hold its purchasing power fully at the level of 2011 five years, 10 years or 20 years from now, I would tell you it will not."

[...]

In March, the dollar — adjusted for inflation — hit its lowest point against major U.S. trading partners' currencies since its value was allowed to fluctuate in January 1973, according to Federal Reserve data.

"This is the true measure of what the dollar's worth," said Kenneth Rogoff, a Harvard economics professor and former chief economist at the International Monetary Fund. "It shows what you can buy with the U.S. dollar."

A weak dollar isn't necessarily a bad thing, Rogoff said — it can make the United States more competitive, bolster exports and help domestic companies that are vying against imported goods here in the United States. It effectively would be playing the China card against China in a battle for manufacturing jobs.

[...]

Moreover, the <u>U.S. deficits</u> seem likely to continue for years. Under current law, the federal government will run deficits totaling \$4.5 trillion over the next five years; by 2021, the federal debt held by the public would soar to \$19 trillion, up 75 percent from 2011, according to the <u>Office of Management and Budget's</u> 2012 proposal. **Many fund managers say the only way out of that box is a weaker dollar**, reducing the value of the massive amount of U.S. debt held by foreigners and increasing the value of American investments abroad...."

Exchange Rates & Globalization Global Labor Costs

Source: Boston Consulting Group

PRESS RELEASES

May 05, 2011

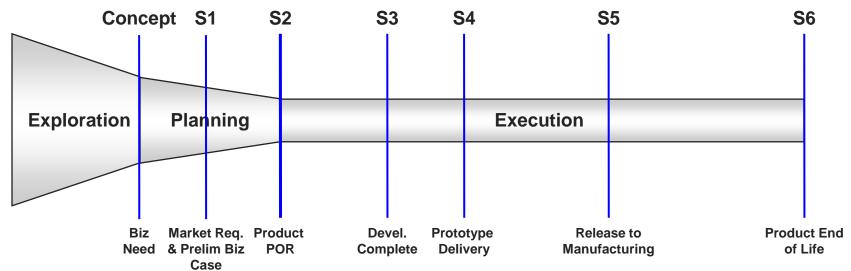
Made in the USA, Again: Manufacturing Is Expected to Return to America as China's Rising Labor Costs Erase Most Savings from Offshoring

Reinvestment During the Next Five Years Could Usher in a 'Manufacturing Renaissance' as the U.S. Becomes a Low-Cost Country Among Developed Nations, According to Analysis by The Boston Consulting Group

CHICAGO, May 5, 2011—Within the next five years, the United States is expected to experience a manufacturing renaissance as the wage gap with China shrinks and certain U.S. states become some of the cheapest locations for manufacturing in the developed world, according to a new analysis by The Boston Consulting Group (BCG).

With Chinese wages rising at about 17 percent per year and the value of the yuan continuing to increase, the gap between U.S. and Chinese wages is narrowing rapidly. Meanwhile, flexible work rules and a host of government incentives are making many states—including Mississippi, South Carolina, and Alabama—increasingly competitive as low-cost bases for supplying the U.S. market. In upcoming decades, weaker dollar & sharp labor cost increases in emerging geos could potentially dampen MNC investments there – geos with more autonomy & scale are less likely to lose their global footprint *

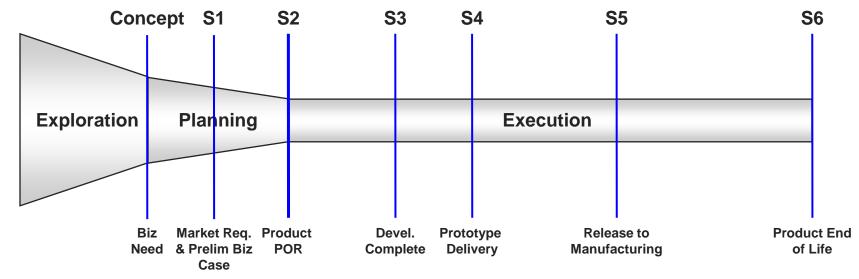
*Naturally, multiple factors determine global business investments – e.g., customer locations, supply chain, cost, quality, TTM, skillsets, etc. However, geos with narrow product focus could be more vulnerable to global changes & increased cross-geographic competition



Outline

Introduction	 LSI overview What is autonomy & scale? Motivation for this talk Key messages
Why Autonomy & Scale	 Key VLSI industry trends First-to-market vs. lasting leadership Growth isn't easy Exchange rates & globalization
Autonomy in Semi Business	Functional autonomyManagement autonomy
Scaling the Semi Business	 Imagining scale Framework for driving scale Organization Strategy/Planning Operations
Looking Ahead	Closing Thoughts

Functional Autonomy - Greater End-to-End Capabilities


- Roadmap/ Strategy Dev
- Strategic cust. engagement
- Product Definition
- Arch definition
- Product POR
 - · Design & Verif.
 - Emulation
 - Proto & prodn. planning
 - Proto build & validation
 - Customer samples/support
 - Pre-production ramp/qual
- Manufacturing mgmt
- Demand/supply mgmt

Capability Type*

Customer support

Functional Autonomy - Greater End-to-End Capabilities

- Roadmap/ Strategy Dev
- Strategic cust. engagement
- Product Definition
- Arch definition
- Product POR
 - · Design & Verif.
 - Emulation
 - Proto & prodn. planning
 - Proto build & validation
 - Customer samples/support
 - Pre-production ramp/qual
 - Manufacturing mgmt
 - Demand/supply mgmt

Capability Type*

Customer support

Extent and depth of functional autonomy in India varies by sector Increased exposure to in-country OEMs usually drives more autonomy

Management Autonomy – Strong Mgmt/Leadership

Journal of Economic Perspectives—Volume 24, Number 1—Winter 2010—Pages 203–224

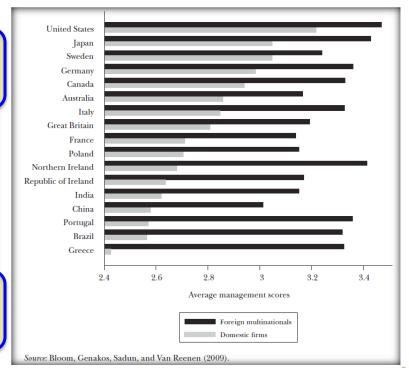
Source: World Management Survey

Why Do Management Practices Differ across Firms and Countries?

Nicholas Bloom and John Van Reenen

"...First, firms with "better" management practices tend to have better performance on a wide range of dimensions: they are larger, more productive, grow faster, and have higher survival rates.

[...]

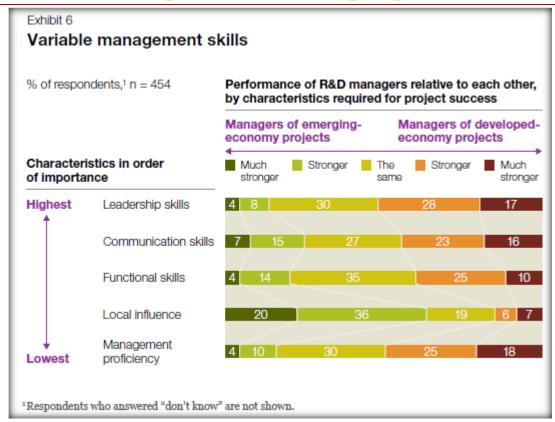

Fourth, strong product market competition appears to boost average management practices through a combination of eliminating the tail of badly managed firms and pushing incumbents to improve their practices.

[...]

Fifth, multinationals are generally well managed in every country. They also transplant their management styles abroad....

...

Sixth, firms that export (but do not produce) overseas are better-managed than domestic non-exporters, but are worse-managed than multinationals..."



Management Autonomy – Strong Mgmt/Leadership

Source: McKinsey Quarterly, April 2011

McKinsey Global Survey results

R&D strategies in emerging economies

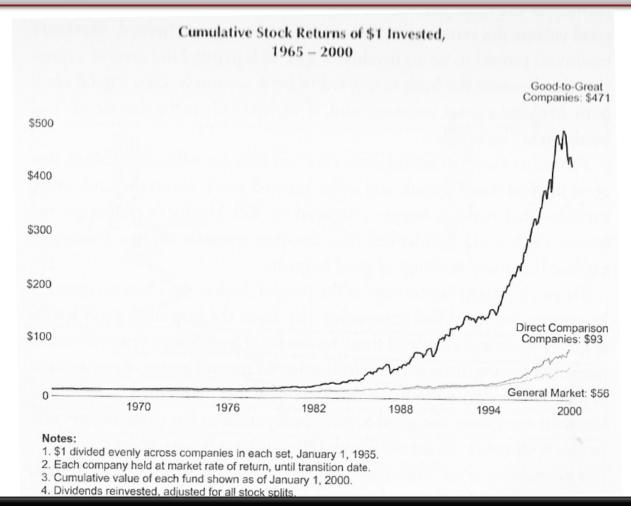
Functional autonomy needs to be matched with management autonomy Requires building superior management skillsets to drive the business

Outline

Introduction	 LSI overview What is autonomy & scale? Motivation for this talk Key messages
Why Autonomy & Scale	 Key VLSI industry trends First-to-market vs. lasting leadership Growth isn't easy Exchange rates & globalization
Autonomy in Semi Business	Functional autonomyManagement autonomy
Scaling the Semi Business	 Imagining scale Framework for driving scale Organization Strategy/Planning Operations
Looking Ahead	Closing Thoughts

Imagining Scale

Success Typically Means More	Which Calls For <i>Non-Linear</i> Improvements in
Customers Channel Partners	 Customer requirements management Customer support Marketing and sales Partner management
Products Volumes Revenues Profits Cash	 Strategy & product definition Time to market performance Product quality Product delivery Financial management
Employees	Management/leadership teamManagement structureRight skillsets
Suppliers Logistics Infrastructure	Supplier/vendor managementLogistics managementInfrastructure management
Competitors	Competitive assessment & response plans
Investors Communication	 Investor relationship management Media management Policy engagement Communication framework
M&Aover time	M&A management


Scale requires recognizing where & when new or different approaches are required to solve challenges of growth

Jim Collins' "Good to Great" Companies

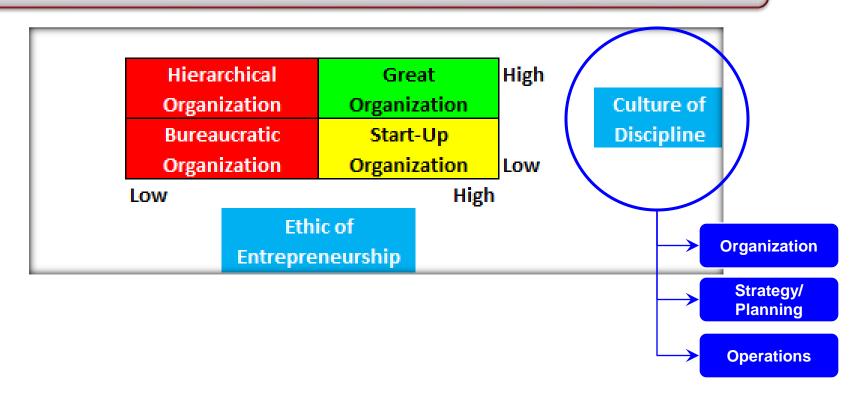

Collins & his team did an assessment on 1000+ US companies and identified a subset that they believed reflected superlative performance over at least 15 years

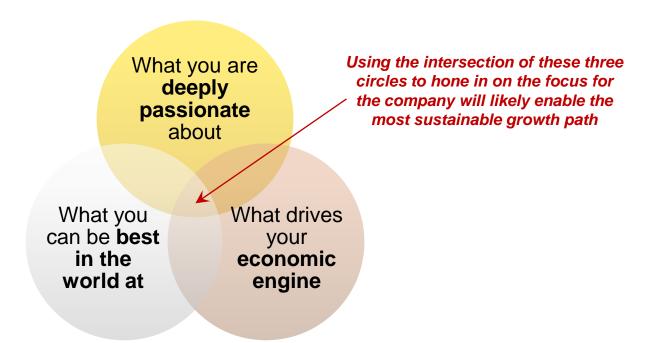
Chart from Jim Collins' book "Good to Great", Harper Collins, 2001, p. 4

Driving Scale – A Culture of Discipline

Chart adapted from Jim Collins' book "<u>Good to Great</u>", Harper Collins, 2001, p. 122 "The Good-to-Great Matrix of Creative Discipline"

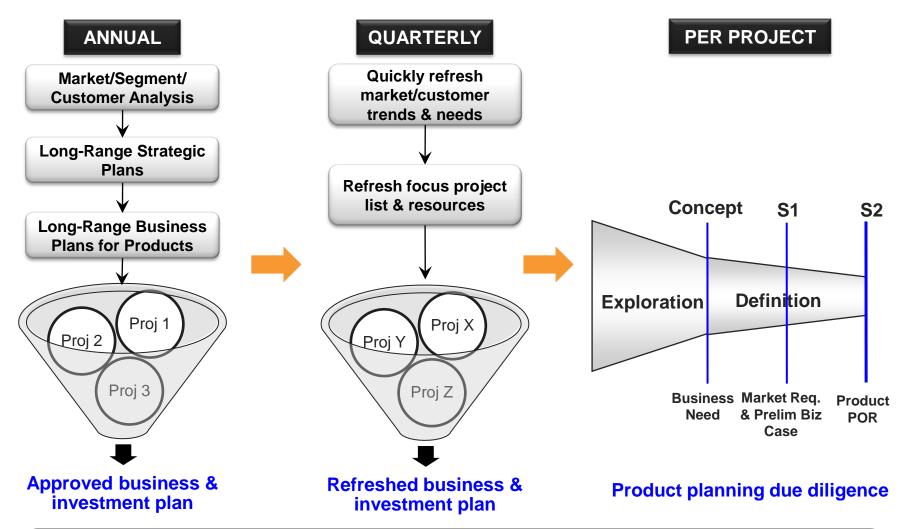
Discipline should never be an end into itself Intent should be to achieve & accelerate business goals

Organization – Focus & Diligence


Key Focus Area	Optimal Scenario for Scale-Building		
Leadership	Company comes first, over personal goalsBased on a foundation of trust across teams		
Structure	Optimized for long-term success & scalabilityNot built around specific personalities per se		
Skillsets	Tailored for building world class capabilities		
Goals & Alignment	Clear goals & ownership with full alignmentGoals understood broadly within org		
Ownership & Accountability	Unambiguous roles & responsibilities		

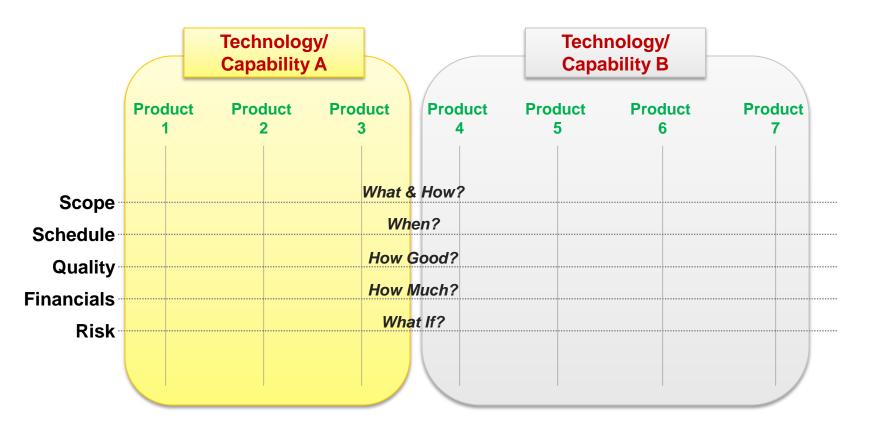
Organizational discipline is one of the three pillars of creating scale

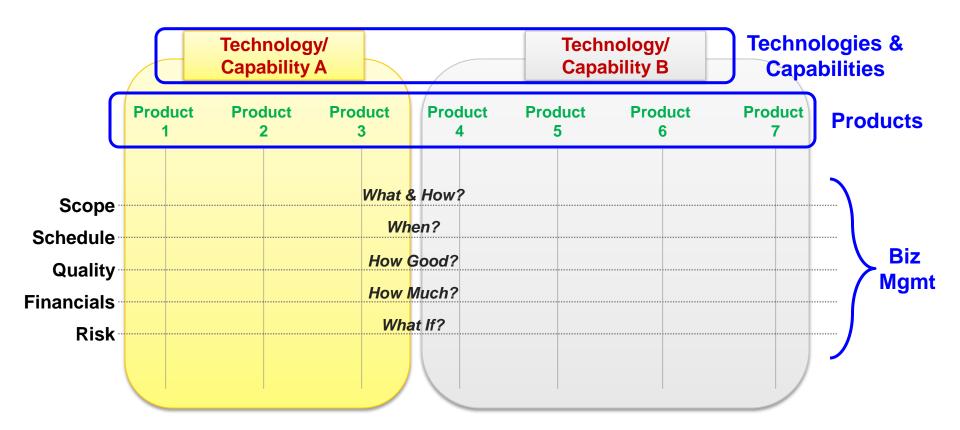
Strategy / Planning - Focus


Chart adapted from Jim Collins' book "Good to Great", Harper Collins, 2001, p. 118
"Three Circles of the Hedgehog Concept"

Discipline in setting strategic direction starts with laser-like focus Strategic agility on business environment changes is essential

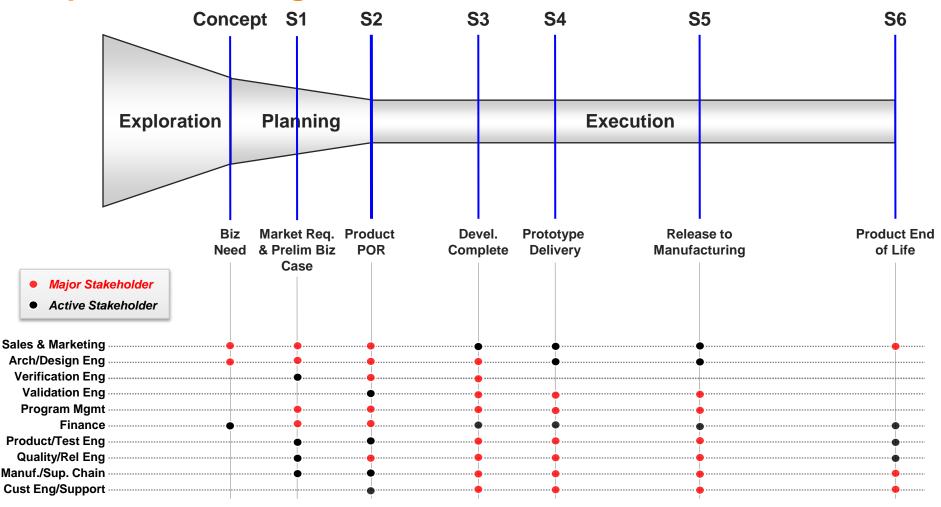
Strategy / Planning - Diligence


Establish focus on what needs to be done at a high-level & drive due diligence on the planning to get it done


Operations - Focus

	Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Product 7
Schedule Quality							
			How	Good?			
i ilialiciais			Wh	at If?			

Operations - Focus


Operations - Focus

Due diligence in operations cuts across products, technologies/capabilities & overall business management

Operations - Diligence (e.g., product)

- 1. Establish who does what & what every stakeholder needs from others at all stages
- 2. Plan & state what we intend to do (e.g., POR), then follow-up & do what we said (actual v. POR)
- 3. Eliminate communication barriers and always face up to reality & customer needs
- 4. Drive a culture of discipline for scalability, but provide appropriate flexibility

Operations - Diligence (e.g., product)

"I tell this story to illustrate the truth of the statement I heard long ago in the Army:

Plans are worthless, but planning is everything."

– Late US President Dwight David Eisenhower, 1957

Outline

Introduction	LSI overviewWhat is autonomy & scale?Motivation for this talkKey messages
Why Autonomy & Scale	 Key VLSI industry trends First-to-market vs. lasting leadership Growth isn't easy Exchange rates & globalization
Autonomy in Semi Business	Functional autonomyManagement autonomy
Scaling the Semi Business	 Imagining scale Framework for driving scale Organization Strategy/Planning Operations
Looking Ahead	Closing Thoughts

Closing Thoughts

- Industry trends & challenges call for autonomy & scale building
 - Businesses in "emerging" geographies like India should embrace this more

Opportunities exist in India to expand scope of VLSI businesses

- End-to-end VLSI capabilities that encompass greater system-level knowledge could increasingly be an asset & value-add
- Design IP might be primary value-add currently, but businesses can't take more control over their destiny without mastering end-to-end capabilities

India can participate more broadly on the global stage

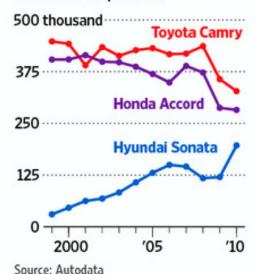
- Industry & government should look to enable the right environment & infrastructure to facilitate greater autonomy & scale over the next decade
- Growth of in-country OEMs & manufacturing could offer favorable conditions

Backup Slides

Automobile Industry Anecdote

Thursday, June 30, 2011 As of 12:00 AM

THE WALL STREET JOURNAL. AUTOS


Source: Wall Street Journal

Once a Global Also-Ran, Hyundai Zooms Forward

By MIKE RAMSEY And EVAN RAMSTAD

Revving Up

Hyundai Sonata's U.S. sales vs. its main competitors

"..... Lately, Hyundai, and the affiliate it controls, Kia Motors Corp., have become formidable competitors. About a decade ago, Hyundai was a global also-ran—a maker of small, cheap, no-frills cars with a reputation for breaking down. In the late 1990s, Hyundai and Kia together ranked as the world's 13th-largest auto maker, according to the International Organization of Motor Vehicle Manufacturers.

But in the past decade, the company worked hard to root out defects, improve quality and design, expand production into low-cost locations and offer cars with more features than its competitors, like a 10-year warranty. And it has pulled off some feats that many of its rivals haven't been able to accomplish, or dared to try.

[...]

Several years ago, Hyundai made no secret that it hoped to become the world's largest auto maker some day. Mr. Yang says that thinking has changed.

GM and Toyota became the world's largest and then stumbled, he noted, adding that making 10 million cars a year would require running 50 factories—more, in his view, than a company can run effectively.

"Should there be a certain range, maybe 6 million or 7 million, that is best?" Mr. Yang said. "We don't know what size is optimum. But bigger, bigger, biggest is always good? We don't think so."....."

Linking Strategy & Execution

- Assuming that a company's strategy has been well defined & communicated, serious challenges might prevent that from being translated into sound execution
- OnPoint Consulting 2006 survey of senior managers and executives at numerous companies elicited the following response:
 - "Nearly 50% of business leaders say there is a gap between their organization's ability to develop strategy and their ability to execute it"
 - "Even more disturbing, 64% lack confidence in their org[...]'s ability to close that gap"
- Numerous analyses & surveys have called out the impact of poor requirements definition & planning & impact of resource conflicts on high percentages of IT project failures (e.g., <u>ZDNet 1</u>, <u>ZDNet 2</u>)
- HBR's "Why Most Product Launches Fail" (by Joan Schneider and Julie Hall) highlighted areas where misunderstanding of market needs, as well as quality & manufacturing issues end up amongst the top reasons why new products don't succeed

