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The Hardware-Software Boundary

Hardware Abstraction Layer (HAL)

Operating System

Application Application

Idealiza(on: hardware has rigid specifica(ons
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The Hardware-Software Boundary

Reality: hardware characteris(cs are highly variable

Hardware Abstraction Layer (HAL)

Operating System

Application Application
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The Hardware-Software Boundary

Prac(ce: over‐design & guard‐banding for illusion of rigidity 

Hardware Abstraction Layer (HAL)

Operating System

Application Application
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Manufacturing Variability Meets Moore’s Law:
From Chiseled Transistors to Molecular Assemblies

Technology Generation

P
er

fo
rm

an
ce

nominal 
scaling

130nm        90nm       65nm     45nm       32nm      22nm                  post-silicon

design for worst case:
overdesigned scaling

design for 
nominal, let 
software 
handle 
variation

!
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polishes
faster

C1 C2

≠

Litho induced variability Gate oxide variability

Interconnect variability

Discrete Dopant Fluctutations

249,403,263 Si atoms:
68,743 donors & 13,042 acceptors
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Cortex M3 Active Current @ Room Temperature
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~ 5% Variation

UCLA
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Active Power Variability Across Temperature
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Active Power Variability Across Temperature
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Sleep Power Variability Across Temperature
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30% Variation

4x Variation14x Variation
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Source #1: Manufacturing Variability Example

13

• Observables
‣Maximum speed, 

energy efficiency

• Mitigation mechanism
‣Computation fidelity
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Source #2: Vendor Variability Example
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Permanence Spatial Granularity Temporal Rapidity Magnitude

Permanent Part-to-part Fixed Large
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• Observables
‣Relative cost of memory 

and compute operations

• Mitigation mechanism
‣Algorithm selection
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Source #3: Ambient Variability Example
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Permanence Spatial Granularity Temporal Rapidity Magnitude

Transient Part-to-part Medium Large

Variation in Psleep with temperature across five 
instances of an ARM Cortex M3 processor

• Observables
‣Sleep mode power

• Mitigation mechanism
‣Adapt duty cycle ratio
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Source #4: Aging Example
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Permanence Spatial Granularity Temporal Rapidity Magnitude

Permanent Within & across part Slow Medium

Normalized frequency degradation in
65 nm due to NBTI [Zheng09]

• Observables
‣Speed degradation, 

increased error

• Mitigation mechanism
‣Computation elasticity
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Normalized frequency degradation in
65 nm due to NBTI [Zheng09]
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Variation in Psleep with temperature across five 
instances of an ARM Cortex M3 processor
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Let us take another look at the HW/SW stack

Time or part

Hardware Abstraction Layer (HAL)

Operating System

Application Application

}overdesigned
hardware

18

20x in sleep power
50% in performance

40% larger chip
35% more active power
60% more sleep power
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Imagine a new hardware-software interface...

Time or part

Application

Hardware Abstraction Layer (HAL)

Operating System

Application

minimal variability 
handling in hardware 

Underdesigned
Hardware

Opportunistic
Software

Traditional
Fault-tolerance
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Hardware: Self-monitoring as opposed to self-
healing

20

•Measure hardware signatures, use fluid constraints in HW design, 
error possibility in operation using simple device monitors

•Static and Dynamic Reliability Management 
Worst case  

PVTS assumed 

Lifetime 

Realistic PVTS 
conditions 

Target Lifetime(TLT)  
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Worst case  
PVTS assumed 

Lifetime 

Reliability  

Slack  

Traded with 

performance 

Target Lifetime(TLT)  

Realistic PVTS 
conditions with DRM 

Realistic PVTS 
conditions 

Process
Circuit

Functional
System
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Half a dozen sensors for 
variations and processes: 
nbti, oxide, path delay...
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An Underdesigned Multiplier
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•! Idea: change functional description of arithmetic 

units instead of voltage overscaling!

•! Basic building block: 2x2 multiplier!

"! Computes 11 x 11 = 111 (not 1001)!

"! Scalable to arbitrary bit widths by adding partial products!

"! ~40% power reduction but ~8% power overhead in correct 

mode!

"! Average error ~3.3%,  max error ~22.2%!

•!Comparison with voltage overscaling (image 

filtering)!

a) ! Inaccurate multiplier, 41.5% power reduction, SNR : 

20.3dB 

b)! Voltage over-scaling, 30% power reduction, SNR : 9.16dB 

c)! Voltage over-scaling 50% power reduction, SNR : 2.64dB 

Puneet Gupta, UCLA
Provides ability to do designs with 

tunable error characteristics.
Thursday, July 14, 2011



Variability-aware Duty-cycling
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Atmel’s ARM Cortex M3-based 
SAM3U Embedded Processor

Variation in Psleep with temperature across five 
instances of an ARM Cortex M3 processor
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Mani Srivastava, 
UCLAPuneet Gupta, UCLA

Thursday, July 14, 2011



Duty-cycled Wireless Sensors
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sleepactive

c
p

% Duty Cycle = c
p
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Duty-cycled Wireless Sensors
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sleepactive

c
p

% Duty Cycle = c
p
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Duty-cycled Wireless Sensors
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sleepactive

c
p

% Duty Cycle = c
p

↑% Duty Cycle ⇒ ↑Quality of Sensing
P(event detection)
# of data samples

Classification accuracy
…

c↑, p↓
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Feasible Duty Cycle
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Active Power (PA) Sleep Power (PS)

Lifetime (L)

Energy (E)

<c,p> = f (PA, PS, E, L, QoS)
Note: transition time and power ignored here
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Feasible Duty Cycle
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<c,p> = f (PA, PS, E, L, QoS)
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Feasible Duty Cycle
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<c,p> = f (PA, PS, E, L, QoS)

Datasheet:
Active Power
Sleep Power

Variability

Adapt duty cycle when PA, PS vary with 
instance and temperature.
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Adaptable Duty Cycled Tasks in TinyOS

30

Task (pmin, pmax) Task (imin, imax) TaskAdaptable Task Adaptable Task Traditional Task

Duty Cycle Kernel Scheduler:  DC = f (PA, PS, ...)

Hardware Signature

allowable DC

PA, PS, ...
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Hardware Variability Signatures

31
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Measured vs. Modeled Sleep Current

45

These calibrated models are the hardware variability signatures passed to 

the software stack

Measured vs. modeled

!"#$"%$&$'()*+,-.$'$/0 1"#$"%$&$'(2/#3

Analytical Modeling of Sleep Power

! Sources of static (sleep) power:

1. Sub-threshold Leakage

2. Gate Leakage

3. Reverse Biased Junction Leakage 

4. Gate Induced Drain Leakage

! Sleep power model (derived from BSIM4 compact device model)

! A and B are technology-dependent constants

! Igl is the temperature-independent gate leakage current

! T is the core temperature.

45!
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Analytical Modeling of Sleep Power

! Sources of static (sleep) power:

1. Sub-threshold Leakage

2. Gate Leakage

3. Reverse Biased Junction Leakage 

4. Gate Induced Drain Leakage

! Sleep power model (derived from BSIM4 compact device model)

! A and B are technology-dependent constants

! Igl is the temperature-independent gate leakage current

! T is the core temperature.

45!

!"#$$% " &'' !()
"$* #) # +,# $

Analytic modeling of sleep power

•Parameters of calibrated models are the hardware variability 
signatures passed to the software stack
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Improvement over Worst-Case Duty Cycle

32
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Energy Untapped by Worst-Case Duty Cycle
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Lifetime reduction with Datasheet Spec DC
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Average improvement by location
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Temperature Profiles:  NCDC hourly data, 2009
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Benefits greater at smaller duty cycles
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Benefits greater with newer technology
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significant benefits even
with high duty cycles

Worst-Case Duty Cycle: 10%
Temperature range: 60C
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Another Example: Underdesigned Radios

38

Source
App

Tx
Processing

RF
Amp

Rx
Processing

Destination
App

channel

error, loss
& variability

error, deadline
misses, & variability

Problem:
error, deadline

misses, & variability

Current
Practice:

over-design for no error
and minimum speed

tolerate via protocol 
and app level recovery

over-design for no error
and minimum speed

tolerate computational
errors, deadline misses,

and performance variation

tolerate computational
errors, deadline misses,

and performance variation
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Underdesigned & Opportunistic Computing (UNO) Machines:
From Crash-and-Recover to Sense-and-Adapt

Variability manifestations
-faulty cache bits
-delay variation
-power variation

sensors & models

Variability signatures:
-cache bit map
-cpu speed-power map
-memory access time
-ALU error rates

Do 
Nothing

(Elastic User, 
Robust App)

Change 
Algorithm 

Parameters

(Codec Setting, 
Duty Cycle Ratio)

Change 
Algorithm 

Implementation

(Alternate code 
path, Dynamic 
recompilation)

Change to 
Algorithm with 

Different 
Characteristics 

(Dynamic linking to 
new library 

module)

Change 
Hardware 

Operating Point

(Disabling parts of 
the cache, 

Changing V-f)

Underdesign Mechanisms
-stochastic processor
-fluid hw constraints
-application intent

How should hardware 
variability be exposed to the 

various software layers?

39
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Designing an UnO Stack
for Variability-aware Duty-cycling
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Many Sensors: Psleep, Pactive, Memory Speed, Temp, Battery,...

OS
Hardware Signature Inference

On/Off
Read Sample

Sampling Configuration

Sample, Event,
Time -series...

AppApp App
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Duty Cycle = f(Psleep, Pactive)
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One Step Further: 

Active Fault Tolerance
! Rx: Treating bugs as allergies (SOSP’05)

! In case of errors, actively changing execution 

environment to avoid the error-triggering 

“allergen”

" Different layouts

" Memory padding

" Zero-filling

" Different scheduling

" Packet sizing, etc

7

HW-based Error Resilience
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Rakesh Kumar, UIUC

YY Zhou, UCSD
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Realizing the Expeditions Project Vision

42
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Realizing the Expeditions Project Vision

43

Testbed 1: General  Purpose Computing

Software Mechanisms 
for DB Querying and 
Map-Reduce Apps

[UCSD, UCI]

Off-line variability 
characterization and Run-time 

hardware signature 
sensing[UCSD, UCLA, UIUC]

Instrumented  Flash 
Servers in GreenLight 

Datacenter
[UCSD]

Scheduler  node 

Job queue 

Workload migration 
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Realizing the Expeditions Project Vision

44

Testbed 2: Embedded Processing for Body Sensor Networks

Sensor Node with 
ARM Cortex M3 CPU 
with in situ Variability 
Sensor [UM, UCLA]

Off-line variability 
characterization and Run-time 

hardware signature sensing
[Stanford, UCLA, UM]

OS, PL, and App 
Mechanisms for 

Distributed Sensing
[UCLA, UCI, UCSD]

4

Razor-enabled energy-efficient ARM processor 

UMC 65SP (High Performance) 

Process

! 1V nominal VDD and 1.1V Overdrive

Implements a sub-set of ARM ISA

! Critical-paths representative of ARM 

industrial processor designs

87 die from split lots

! 30FF/37TT/20SS

724MHz sign-off frequency 

! 0.9V/SS/125C

Adaptive Control Experiments

! Adaptive Frequency Control  - DFS 

! Adaptive Voltage Control  - DVS 

Adaptive F/V Control
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ISF based Alcohol 
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Realizing the Expeditions Project Vision

45

Testbed 3: Software Radio

Off-line variability 
characterization and Run-time 

hardware signature 
sensing[UCLA, Stanford, UM]

ARM Cortex M3 CPU &  
Underdesigned DSP

Accelerators
[UM, UCLA]

Variability-aware GNU 
Radio + N/W Protocol 

Stack under Linux
[UCLA, UCSD]

4

Razor-enabled energy-efficient ARM processor 

UMC 65SP (High Performance) 

Process

! 1V nominal VDD and 1.1V Overdrive

Implements a sub-set of ARM ISA

! Critical-paths representative of ARM 

industrial processor designs

87 die from split lots

! 30FF/37TT/20SS

724MHz sign-off frequency 

! 0.9V/SS/125C

Adaptive Control Experiments

! Adaptive Frequency Control  - DFS 

! Adaptive Voltage Control  - DVS 

Adaptive F/V Control

E
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a
l 
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O

DRAM

IRAM

Processor Core
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Realizing the Expeditions Project Vision

46

Testbed 4: Mobile Computing for Multimedia

Instrumented 
Android Smartphone

[UCLA]

Off-line & S/W-inference based 
run-time power & error variability 

characterization [UCLA]

Variability Adaptation 
Mechanisms for VP8 
Codec [UCI, UCLA]
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Realizing the Expeditions Project Vision
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Outreach

Physically-minded 
Computing

COSMOS
LACC
...

Thursday, July 14, 2011



Opportunistic SW
Underdesigned HW

‣No rigid constraints on hardware implementation
‣Sense-and-adapt, rather than crash-and-recover
‣Leverage application intent, adaptability,

and error resilience

Underdesign HW

Variability Expedition:
A Paradigm Shift to Fluid HW-SW Interfaces

Software-driven
Equivalent 

Scaling

Eliminate the 
“last MHz”
Problems

Towards 
Physically-

minded 
Computing

Overcome the 
Power-

Performance 
Wall

Opportunistic SW

‣Radical departure from hard failures to soft variability
- Work through hardware variability

- rather than over-designed hardware and fault-handling 
software

- Software becomes a significant part of the solution to 
variability

‣ Software adapts to part as manufactured rather than 
as designed
- opportunistically exploit application elasticity
- adaptation simplifies the structure of software layers

48
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Technology Generation
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Hardware Abstraction Layer (HAL)

Operating System

Application

minimal variability 

handling in hardware 
Underdesigned

Hardware

Opportunistic

Software

Traditional

Fault-tolerance

Puneet Gupta (puneet@ee.ucla.edu)
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Variability-Aware Software for Efficient Computing with Nano-scale Devices 

Problem: Increasing variability in nanoscale 
devices leading cause of overdesigned hardware.

Normalized frequency degradation in
65 nm due to NBTI [Zheng09]
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Variation in Psleep with temperature across five 
instances of an ARM Cortex M3 processor
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Power variation across five 512 MB 
DDR2-533 DRAM parts [Hanson07]
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Frequency variation in an 80-core processor
within a single die in Intel's 65nm technology

Goal: Re-architect the hardware-software stack
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