Challenges & Approaches for Future
Secure Execution Environment
Design

Yan Solihin

Cybersecurity & Privacy Cluster
Professor & IEEE Fellow
UCF

Yan.solihin@ucf.edu

Solihin - ISVLSI 2019 Keynote

Outline of The Talk

A little bit about myself

Motivation

Secure Execution Environment Milestones
Future Challenges

Conclusions

Outline of The Talk

* A little bit about myself

A Little Bit About Myself

2002-2018: Professor of ECE, NCSU FUNDAMENTALS
2008: GCOE Visiting Prof, Waseda Univ, Japan TTTaa

2011: Consultant, Intellectual Ventures

2016-2018: Program Director, NSF
— SaTC, XPS/SPX, CSR, BigData
— Co-Founded NSF/Intel Partnership on Foundational

Parallel

Microarchitecture Research (FoOMR)

2018-present: UCF
— Director of Cybersecurity & Privacy Cluster, Prof in CS

ARPERS research group
— 14 PhD grads + 7 PhD students (2 at NCSU + 5 at UCF)

Solihin - ISVLSI 2019 Keynote

UCF Cyber Security & Privacy Cluster

Dr. Yan Solihin, Cluster Lead Dr. Aziz Mohaisen Dr. Clay Posey

Dr. Gary Leavens Dr. Cliff Zou Dr. Paul Gazzillo

Dr. Pam Wisniewski Dr. Amro Awad

.
S

Solihin - ISVLSI 2019 Keynote

Research Areas

Trustworthy Cloud (secure enclave, side channels): Yan, Gary, Paul, Amro
Blockchain (smart contract, crypto jacking, scalability): Aziz, Paul

Secure Machine Learning (adversarial ML, integrity protection, recovery):
Aziz, Yan

Organizational and behavioral (insider threat, policy compliance): Clay

Privacy (networked privacy and online safety, privacy-oriented
architecture, data enclave): Pam, Yan, Clay

Malware (analysis): Aziz, Cliff

Digital forensics (fraud detection and forensics): Cliff

Software security (formal methods, software engineering): Gary, Paul
loT s4

We expect to hire 2 tenure-track
Assistant Professors for 2020.
Please spread the word!

Outline of The Talk

* Motivation

£s

DEVIC

BILLIONS OF

Internet of Things

" THE INTERNET OF THINGS unii @

AN EXPLOSION OF CONNECTED POSSIBILITY

=) 100,001

2.1 BILLION
34.8 BILLION g
- s4pLoy B
22.9 BILLION g

18.2 BILLION ﬂ

4.4 BILLION o
12 BILLION (G
JTY (5 —

- loT INCEPTION
0.5 BILLION (o) N &

YEAR

Solihin - ISVLSI 2019 Keynote Source: internet

Exponential Growth of Data

The Cambrian Explosion...of Data

:

20000

20000

Exabytes (billions of GB)
. 8 g
2014 B8
2015
2016
2017
2013 I
2019

2009 |
2010 |
2011 |
2012 B
2013

2006
2007

:

2020

® Structured Data ® Unstructured Data

Figure 2. The growth of structured versus unstructured data over the past
decade shows that unstructured data accounts for more than 90% of all data
(Click here to see a larger image. Source: Patrick Cheesman)

*YouTube users upload 48 hours of new video
every minute of the day. (Source)
Solihin - ISVLSI 2019 Keynote

*100 terabytes of data uploaded daily to
Facebook. (Source)

http://wikibon.org/blog/big-data-infographics/
http://wikibon.org/blog/big-data-infographics/

Cloud and Edge Computing Model

Thousands

CLOUD | Data Centers

Millions
FOG | Nodes

EDGE | Devices

Solihin - ISVLSI 2019 Keynote Source: internet

Secure Execution Environment (SEE)

* Goal:
— Confidentiality of a, f(x), and f(a)
— Integrity of f(x)
— User receives f(a)

 What could go wrong?

Solihin - ISVLSI 2019 Keynote

Threats

* Data centers warehoused in a large facility
— Physical security usually very good

* Business model requires high utilization, through
virtualization and hardware sharing

 Vulnerabilities

— Large attack surface
» System software (hypervisor and OS) security point of failure
e Hypervisor (200-800K LoCs) and OS (e.g. 50M LoCs)

— Side channels threats: attacker VM may infer secret
from behavior of victim VM

— SEE attempts to reduce the Root of Trust

From PC to Cloud

PC

A

Untrusted
Application Software

System Software
(Hypervisor, OS,

device drivers)
LQ A

ISA Trusted

Architecture

Hardware

e System SW is trusted
— Windows XP ~50M LoC

— Device drivers, Hypervisor, ROM,
microcode, etc.

e Security is software
responsibility

Cloud

Application Software

System Software
(Hypervisor, OS,
device drivers)

Architecture -—--

Hardware

TCB only HW+Arch

— System SW untrusted

Arch provides secu

Encl
ave
SW

| l
____——

re

\
A

Untrusted

Trusted

environment (e.g. enclave)

Industry Solution: TEE

e Several competing models

Technology HW Trusted Base SW Trusted Base

TPM Motherboard (CPU, All software
TPM, DRAM, buses)

TrustZone CPU chip Secure world
(firmware, OS, apps)

Secure Processor (XOM, CPU chip Application + small SW
Aegis, SGX, etc.)

Source: Devadas

Solihin - ISVLSI 2019 Keynote

A Look Back: Secure Processor

* CPU as the trusted secure parameter
— Functionally correct and bootstrapped securely
* Everything else untrusted
— System bus, memory, |/O, prone to snooping/modifications

* Requires memory encryption and integrity verification
— (also key management, attestation, not part of the talk)

Solihin - ISVLSI 2019 Keynote

Memory Encryption and Integrity

Verification
Prigﬁrcyeph)((X) =00, HOO -
X - | -
Decrypt E(X) -
Verify H(X) -
e Writeback data block X from Cache

— Encrypt X, compute H(X), then store in memory

* Cache miss on data block X
— Fetch E(X) and H(X)
— Decrypt E(X), compute H(X) and compare vs. Mem[H(x)]
— Verify freshness of X

Solihin - ISVLSI 2019 Keynote

Outline of The Talk

e Secure Execution Environment Milestones

Key Milestones

« XOM (2000): memory encryption
* Yang et al. (2003): counter-mode encryption

— Encryption delay removed from critical path delay

Encryption Process

* Key to security: counter must never be reused

ISecure Chip Jndary 1
Last Level | WriteBack X /T Ciphertext of X Main
> >
Cache \ | / Memory
Key Encryption -
Addr(X)
—»‘ Address ‘ Counter \ vV

Counter -

Cache

Solihin - ISVLSI 2019 Keynote

Decryption Process

e Key to performance: counter cache miss rate
must be low

1 Secure Chtoundary

Fetch (X)

—>
Last Level Plaintext of X /" _Ciphertgxt of X Main
- -
Cache \ | / Memory

Key Encryption _

‘ Addr(X)

—>| Address ‘ Counter \ vV
Counter _
Cache

Solihin - ISVLSI"2019 Keynote

Key Milestones

« XOM (2000): memory encryption
* Yang et al. (2003): counter-mode encryption

— Encryption delay removed from critical path delay

* AEGIS (2003): Merkle Tree memory integrity
verification

Merkle Tree

Merkel Tree

Stored in Proc Chip

128-bit
Hash Cacheable

Data/VVV\
AENARNANARNAREEN

Blocks
(64B each)

 ~Half of main memory
unusable for data:
— MT (33%) + Counters (9%)

* |nsecure

Main
Memory

* Atree of hashes covering all

data in memory
Root always kept on chip

* Non-root are cacheable

Verification by computing
hash and comparing it up
the tree

| Data ‘ Counters ‘ MT nodes |

58% 9% 33%

Solihin - ISVLSI 2019 Keynote

Key Milestones

XOM (2000): memory encryption
Yang et al. (2003): counter-mode encryption

— Encryption delay removed from critical path delay

AEGIS (2003): Merkle Tree memory integrity
verification

Yan (2006): discovery of counter-rollback
attacks,

P

Main | Data ‘ Counters ‘ MT nodes |
Memory

Split Counter Organization [Yan’06]

* Monolithic counter: too big (high counter cache miss rate) vs.
too small (frequent whole memory re-encryptions)

* Use Split Counter instead

4KB Page (64 Cache blocks)| Cacheblk0 | Cacheblk1 | | Cache blk 63
512-bits 512-bits 512-bits
64-bit 7-bit 7-bit 7-bit

Major (per page)

Major Minor Cache line address

\Y

* Major counter never overflows => no whole memory re-encryption
e Effective counter size is 8 kits far 2 648 block (88% reduction!)

Key Milestones

XOM (2000): memory encryption
Yang et al. (2003): counter-mode encryption
— Encryption delay removed from critical path delay

AEGIS (2003): Merkle Tree memory integrity
verification

Yan (2006): split counter, discovery of counter-
rollback attacks

Rogers (2007): Bonsai Merkle Tree

Bonsai Merkle Tree [MICRO’07]

* First to consider integrity
protection for counter-mode

128.bi D D D D Cachoable encryption

* Protect data using stateful MAC

Data * Key: only counters need
(64B each) freshness protection
* Bonsai MT = MT over counters
only!

— Same security guarantee

 Counter + BMT only

take up 1.4% of main
Split

Main
memaory Memory Data Cir | BMT Hash

* Total for security 21.4% 78.6% 1% 0.4% 20%

Trusted Execution Environment in SGX

e CPU as the secure
parameter

__ e Attestation of enclave
Encla\é%gﬁ w COde

* Key sealing

Encryption of 1 CL
involves 4 AES COUNTER_BLOCK Source:

e e e] me] e * Memory encryption
v
CONFIDENTIALITY KEY > AES128 and Integrlty

v

Encrypted Counter Block Ve r i fi Ca t i O n

Plaintext (or ciphertext),
128b

Ciphertext (or plaintext), 128b Solihin - ISVLSI 2019 Keynote

Outline of The Talk

* Future Challenges

Problems with Intel SGX

Use monolithic counters
— Large memory overheads and slow
— Why not use split counter?

Use derivative of BMT: counter tree

Single chip only

— Won’t work for whole memory, need DSM style
Does not work with Persistent Memory

Side channel ignored
— Attackers will exploit this

Problems with Intel SGX

Use monolithic counters
— Large memory overheads and slow
— Why not use split counter?

Use derivative of BMT: counter tree

Single chip only

— Won’t work for whole memory, need DSM style
Does not work with Persistent Memory

Side channel ignorec
— Attackers will exploit this

Solihin - ISVLSI 2019 Keynote

Traditional Server => Rack-Scale Server

Traditional Server Rack-Scale Server
Mem
Memory ory
- Memory Pool
e ——— ——— Memorv
Vem M(:/Imorv
S ——
- - Storage Pool
S ——

<
o
®

Memory

Near (DRAM) Near (NVM) Far
Latency 1X ~5X ~30-50X
Bandwidth 1X 1X 0.1X

CHPacitip! 2019 Keynotg X 2X 10-100X

Key Milestones

* Rogers (2006): Distributed Shared Memory
encryption

Architecture and Assumptions

Security Security
@ Boundary @ Boundary
L1 L1
;9 O 0 O e v
oy [L2 >NE oy [L2
hlem. Ctrl. | Dir. Mem. Ctrl. Dir.
Memory Memory

\M —

inte| Challenges
* Processor-to-Processor (P2P) unprotected

L * Asingle load/store instruction may involve P2M and P2P
* Need a unified security protocol

Huge Overheads from the Traditional
Cache Coherence Protocol

R t H Home Requestor Home Home
r m
equesto ome Memory q Memory

&‘ 7 &‘
F

Fetch CTR etch
\ Latency /\
CTEX1 CTEX1

CTEX2
Results

* Overheads are reduced by a factor of 3.3x
 Only minor changes to cache coherence

Intel 3D Xpoint (Optane):

NVM and Storage Class Memory

30 XPowr™ TECHNOLOGY

e 3D XPolnt™

Aleacy. ~10%
Sire of Dass ~ 1 000X

R]

MEMORY

20nm process

SLC (1 bit/cell)

7 microsec latency

78,500 (70:30 random) read/write IOPS
NVMe interface

375GB - 1.5TB Lﬁw—mmm&
Solihin - ISVLSI 2019 Ke : net

Persistent Memory

Program relies on data
to be recoverable after

crash

Counter and MT trees Cfflush X ¢ Ctr updated

must be updated Cache Bl | MAC/MT updated
] Failure

atomically w.r.t. to data
Else data not

recoverable upon crash ‘WVMM \

Secure persistent
memory

Solihin - ISVLSI 2019 Keynote

Optimizing Merkle Tree Persistence

Update Processor | it Update

e

Covers Non-Persistent Region = Covers Persistent Region

Persistent Data

B BN B
N N
1T 5 1

13

Recovery Time vs. Runtime Performance Overhead

Ilteration Time

Few seconds

Tens of seconds

minutes

Hours

Processor

L2 Hash Blocks TriadNVM-2
(tens of millions)
8x
L1 Hash Blocks
8):/ (hundreds of millions)

Counter Blocks (billions)

TriadNVM-1

64x
-

Data Blocks (hundreds of Billions Blocks)

Osiris

+ Strictly Persisting upper levels reduces recovery time.

* In 8—arg tree and split-counter organization, only persisting the first two levels can speed up recovery time by
64*8= 512x times.

* Recovering 8TB memory can take more than 7 hours.

14

Reducing Initialization Time of Non-Persistent Region

Coaw [

Non-Persistent Persistent

o000 2200 0000 --
— 7@. e

Read/Write

15

QO
O
-
©
&
-
O
T
QO
al
-
O
e
O
©
Q
=

The Impact of Persisting Merkle-Tree and Counters on Performance

15.6% performance overhead

=
o ge] [aa]
© © MT
() Q — 00
e c m [T
— - S o
(0] L o0 o >
> > o ©
(@) O o o 9
) v 2 c
c o n& mo
v © S c ¥ a/__rlt o
Q £ 0O € o o9 _
nnurc ‘I__rlt Mr.nu M
Loy s o = oc S
R72 = s Z o ¢ =
o 09 > 9o T SE 5
- O g Z Q 3 © o%
&5 T EZo?
2 E o<
s E
T T T T T T T
oY |
FE==2= :
N>>> :
| Z2Z22Z2 ;
TTT :
ReReN] :
-
| | I I I I I
(o] © N~ © n < [+2] N ~—

(euljeseqg 0} pazijewioN) UMOPMO|S

3.83 seconds to recover 8TB

Benchmarks

Side Channel Vulnerabilities

e “Side channel is the new buffer overflow”

- private conversation with chief Scientific Advisor for National Security, UK

e Side channel vulnerability arises from implementation

e Current TEE has not addressed side channels

— Physical: requires physical access to the system
* Power
 Differential fault
* Electromagnetic (EM)
 Memory access pattern
* Etc.

— Logical: does not require physical access

* Cache
e Data remanence

Page Fault Side Channel

* [XuS&P’15]

Original

Recovered

pointer array (buckets) list nodes
Page-level control transfers
Page A Page A Page D
: word1
r
2 next 7= Ppages associated
o with each word
word2 Word Pages
next
‘\ Page D / b 5 wordl A, D
age
fa(), f5() g Page E word3 word2 B,D
--- next word3 A E
Code page fault sequence: ptr worda | wordd B.D,F
|A.B,DJB|A C,DIC, A next
fa 5 Page C Page F
Fig. 4: The hash table in Hunspell.
Folklore, legends, myths and fairy tales folklore xlegendx myths and fairy xtalex

have followed childhood through the ages,
for every healthy youngster has a wholesome
and instinctive love for stories fantastic,
marvelous and manifestly unreal. The winged
fairies of Grimm and Andersen have brought
more happiness to childish hearts than all
other human creations.

have xfollowx childhood through the xagex
for every healthy youngster has a wholesome
and instinctive love for [store] fantastic
marvelous and *manifestx unreal the [wine]
x*fairyx of [grill] and Andersen have brought
more happiness to childish xheartx than all
other human xcreatex

Solihin - ISVLSI 2019 Keynote

Architecture-Related Side Channels

* Memory access pattern * No efficient protection,
* Cache side channel naive approach is
_ Prime+Probe infeasible/impractical
_ Flush+Reload e Affecting cloud servers
— Evict+Time down to loT
— Flush+Flush * Full computing stack
— Prime+Abort — Application, program,
* Cache coherence side compiler, system,

channel architecture, and hardware

* Branch predictor side
channel

— Techniques must be
composable

Memory Access Pattern

* Data leaks through
access pattern, e.g.

* By looking at access

pattern we can
reconstruct Datali]
values

Solihin -

* Current protection:
ORAM

— Block address
randomized after each
access

Leaf 1 Leaf¢= 6 Leaf 2'=8

Levell =3

Level 2

Level 1 it t Z = 4 blocks

Level 0

External memory

ISVLSI 2019 Keynote

ObfusMem

DRAM Layers g

* Premise

— Memory becoming smart

* 3D memory has logic layer

* Memory interface
Substrate packetized

* We can put crypto engine in
memory

Logic Layer

Y Secure channel between
5 S| processor and memory
s 1. Tle| — 10% overheads vs. 900% in
Caches S A - Baaan
G i &) H ORAM

Secure channel
Solihin - ISVLSI 2019 Keynote

ObfusMem Performance Overheads

AN 9

NN

NN

c
o

B

S

(S)

£ .
2 c 755
e o 7
S] _ S

<< o A\Q
sl E| = %
2 2§

E o |wW ER <

E <« | 8 K
O O | o . %
B 8 N

(94ndasun o3 pazijewoN) 14D @2A1e|dY

Workload

Conclusions

e SEE is needed more than ever
— Hardware root of trust reduces attack surface

— Shift from cloud to edge computing
— NVM augmenting/replacing DRAM as main memory

* Industry effort (TEE) needs substantial
Improvements

— Must consider multi-processors, side channels,
persistent memory

* Great time to work on architecture support for
security!

Thank you and I'd be happy to
answer your questions

